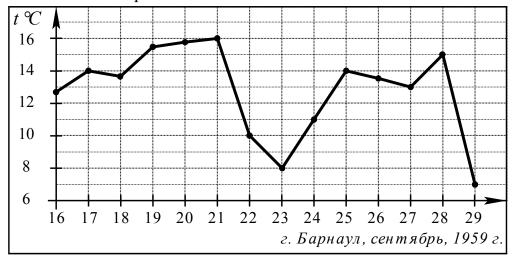
Фамилия	Имя
Школа	Класс


Часть 1

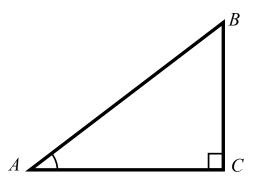
Ответом на задания B1-B12 должно быть целое число или конечная десятичная дробь. Единицы измерений писать не нужно.

В1 Кружка стоит 40 рублей. Какое наибольшее число таких кружек можно будет купить на 600 рублей после повышения цены на 10%?

Ответ: _____

B2 На рисунке показано изменение средней дневной температуры в Барнауле во второй половине сентября 1959 г.

Определите по графику, сколько дней сентября средняя дневная температура находилась в пределах от 9 до 12 градусов Цельсия.

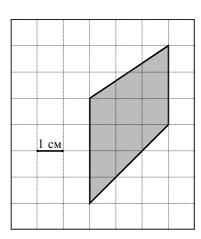

Ответ: _____

В3 Найдите корень уравнения $\log_2(3-x) = 4$.

Ответ: _____

В4 В треугольнике ABC угол C равен 90°, AB = 15, $\sin A = 0.8$. Найдите длину стороны AC.

Ответ:______© 2009 МИОО

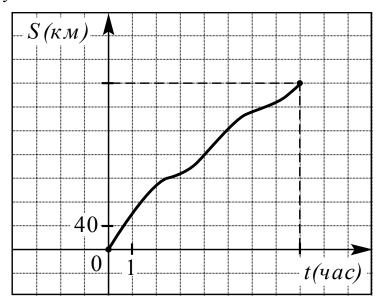


В5 Строительной фирме нужно приобрести 20 тонн песка у одного из трех поставщиков. Цены и условия доставки приведены в таблице. Сколько рублей придется заплатить за самую дешевую покупку с доставкой?

Поставщик	Стоимость (рублей за 1 тонну)	Стоимость доставки (руб.)	Дополнительные условия
A	650	2000	При заказе не менее 20 тонн скидка на доставку 50%
Б	710	2000	При заказе на сумму больше 10 000 руб. доставка бесплатно
В	610	2500	

твет:						

В6 Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см × 1 см (см. рисунок). Ответ дайте в квадратных сантиметрах.



		ет:
$\mathbf{\mathcal{I}}$	ıD	\cdot

В7 Вычислите значение выражения $\log_{\sqrt{5}} 8 - \log_{\sqrt{5}} 1, 6$.

Ответ: _____

B8 На рисунке изображен график движения грузового автопоезда между двумя городами. На оси абсцисс откладывается время в часах, а на оси ординат – пройденный путь в км.

По графику определите среднюю скорость автопоезда на всем пути. Ответ дайте в километрах в час.

В9 Аквариум имеет форму прямоугольного параллелепипеда высотой 40 см. Чтобы наполнить его доверху, требуется 60 л воды. Сейчас в аквариуме от уровня воды до верхнего края 4 см. Сколько литров воды в аквариуме сейчас?

Ответ: _____

В10 При температуре 0°С железнодорожный рельс имеет длину l_0 = 12,5 м. При укладке железнодорожного полотна между двумя рельсами оставили зазор 6 мм. При нагреве происходит тепловое расширение металла, и длина рельса меняется по закону $l(t^\circ) = l_0 (1 + \alpha \cdot t^\circ)$, где $\alpha = 1, 2 \cdot 10^{-5} (^{\circ}C)^{-1}$ — коэффициент теплового расширения, t° — температура (в градусах Цельсия). При какой наименьшей температуре исчезнет зазор между рельсами? (Ответ выразите в градусах Цельсия.)

Ответ:

B11	Найдите корень уравнения	$25^x + 4 \cdot 5^x - 5 = 0$
------------	--------------------------	------------------------------

Ответ: _____

В12 Речной теплоход в 10:00 вышел из пункта А в пункт В, расположенный в 30 км от А. Простояв в пункте В 1 час, теплоход отправился обратно и вернулся в А в 15:00 того же дня. Определите (в км/ч) скорость течения реки, если собственная скорость теплохода равна 16 км/ч.

Часть 2

Для записи решений и ответов на задания C1–C6 используйте бланк ответов №2. Запишите сначала номер выполняемого задания, а затем полное обоснованное решение и ответ.

С1 Решите систему

$$\begin{cases} (2x^2 - 5x - 3)\sqrt{\cos y} = 0, \\ \sin y = x. \end{cases}$$

- **С2** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ найдите угол между плоскостью A_1BC и прямой BC_1 , если $AA_1=8$, AB=6, BC=15.
- С3 Решите неравенство $\frac{\log_2 x 5}{1 2\log_2 x} \ge 2\log_2 x$.
- С4 В треугольнике ABC проведены биссектрисы AD и CE. Найдите длину отрезка DE, если AC = 6, AE = 2, CD = 3.
- С5 Найдите все значения a, при каждом из которых график функции $f(x) = x^2 3x + 2 |x^2 5x + 4| a$ пересекает ось абсцисс менее чем в трех различных точках.
- **С6** Найдите все пары натуральных чисел m и n, являющиеся решениями уравнения $3^n 2^m = 1$.

C1

Содержание критерия			
Обоснованно получен правильный ответ			
Получен ответ, но решение не верно только из-за того, что не учтен знак выражения $\cos x (\sin x)$			
Решение не соответствует ни одному из критериев, перечисленных выше.	0		

C2

Содержание критерия			
Обоснованно получен правильный ответ			
Способ нахождения искомого угла верен, но получен неверный ответ или решение не закончено			
Решение не соответствует ни одному из критериев, перечисленных выше.	0		

C3

Содержание критерия	
Обоснованно получен правильный ответ	3
Ответ не точен или из-за арифметической ошибки, или из-за того, что в него включены значения переменной, при которых логарифмируемое выражение обращается в 0	2
Решение содержит верные содержательные преобразования, но в ответе либо потеряны верные промежутки, либо приобретены лишние промежутки	1
Решение не соответствует ни одному из критериев, перечисленных выше.	0

C4

Содержание критерия	Баллы
Рассмотрены все возможные геометрические конфигурации, и	3
получен правильный ответ	
Рассмотрена хотя бы одна возможная конфигурация, в которой	2
получено правильное значение искомой величины	
Рассмотрена хотя бы одна возможная геометрическая	
конфигурация, в которой получено значение искомой величины,	1 1
неправильное из-за арифметической ошибки	
Решение не соответствует ни одному из критериев,	
перечисленных выше.	U

C5

Содержание критерия	
Обоснованно получен правильный ответ	4
Получен верный ответ. Решение в целом верное, но либо имеет пробелы (например, не описаны необходимые свойства функции), либо содержит вычислительные ошибки	3
Верно рассмотрены все варианты уравнения. При составлении или решении условий на параметр допущены ошибки, в результате которых в ответе либо приобретены посторонние значения, либо часть верных значений потеряна	
Хотя бы в одном из вариантов уравнения составлено верное условие на параметр, либо (построен верный эскиз графика функции в целом	1
Решение не соответствует ни одному из критериев, перечисленных выше.	0

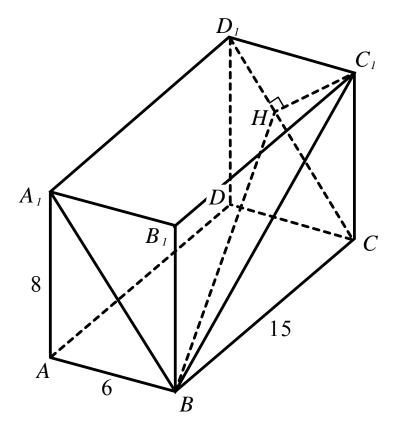
C6

Содержание критерия	Баллы
Обоснованно получен правильный ответ	4
Ответ правилен, но недостаточно обоснован: правильно составлена система необходимых и достаточных условий на пару искомых чисел, но не объяснено, почему перебор ограничен только перечисленными случаями	3
Ответ содержит правильную и, возможно, одну неправильную пару. Произведен перебор возможных пар (возможно неполный) на основе составленных условий на пару искомых чисел, но с арифметическими ошибками или пробелами.	2
Приведена правильная пара и проверено, что она подходит в уравнение.	1
Решение не соответствует ни одному из критериев, перечисленных выше.	0

С1 Решите систему

$$\begin{cases} (2x^2 - 5x - 3)\sqrt{\cos y} = 0, \\ \sin y = x. \end{cases}$$

Если $\cos y = 0$, то $y = \frac{\pi}{2} + \pi k$, $k \in Z$, при этом из второго уравнения следует, что $x = (-1)^k$.


Если $\cos y > 0$, то из первого уравнения находим: x = 3 или $x = -\frac{1}{2}$.

При x=3 второе уравнение не имеет решений, а при $x=-\frac{1}{2}$, учитывая условие $\cos y>0$, получаем: $y=-\frac{\pi}{6}+2\pi k, k\in Z$.

Ответ:
$$((-1)^k; \frac{\pi}{2} + \pi k), (-\frac{1}{2}; -\frac{\pi}{6} + 2\pi k), k \in \mathbb{Z}$$
.

С2 В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ найдите угол между плоскостью A_1BC и прямой BC_1 , если $AA_1=8$, AB=6, BC=15.

Сечение плоскостью A_1BC есть прямоугольник A_1BCD_1 .

Из точки C_1 проведем перпендикуляр C_1H к CD_1 . BH — проекция BC_1 на плоскость A_1BC . Значит, нужно найти угол C_1BH .

В прямоугольном треугольнике D_1C_1C находим: $C_1H = \frac{D_1C_1 \cdot C_1C}{D_1C} = \frac{24}{5}$.

В прямоугольном треугольнике BCC_1 находим: $BC_1 = 17$.

В прямоугольном треугольнике C_1HB находим: $\sin B = \frac{C_1H}{BC_1} = \frac{24}{85}$.

Ответ: $\arcsin \frac{24}{85}$.

С3 Решите неравенство $\frac{\log_2 x - 5}{1 - 2\log_2 x} \ge 2\log_2 x$.

Сделаем замену: $y = \log_2 x$. Получаем: $\frac{y-5}{1-2y} \ge 2y$; $\frac{4y^2-y-5}{2y-1} \le 0$; (y+1)(4y-5) < 0

$$\frac{(y+1)(4y-5)}{2y-1} \le 0.$$

Тогда $y \le -1$ или $\frac{1}{2} < y \le \frac{5}{4}$.

Сделаем обратную замену: $\begin{bmatrix} \log x \le -1, \\ 0, 5 < \log x \le 1, 25; \end{bmatrix} \begin{bmatrix} 0 < x \le \frac{1}{2}, \\ \sqrt{2} < x \le \sqrt[4]{32}. \end{bmatrix}$

Other: $0 < x \le \frac{1}{2}$, $\sqrt{2} < x \le \sqrt[4]{32}$.

С4 В треугольнике *ABC* проведены биссектрисы *AD* и *CE*. Найдите длину отрезка *DE*, если AC = 6, AE = 2, CD = 3.

Обозначим BD = y, BE = z. Тогда по свойству биссектрисы: $\frac{3+y}{6} = \frac{z}{2}$ и

$$\frac{z+2}{6} = \frac{y}{3}$$
, откуда $\begin{cases} y+3=3z, \\ z+2=2y; \end{cases}$ $z=1,6; y=1,8,$

$$AB = 3, 6, BC = 4, 8.$$

$$\cos B = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC} = \frac{3.6^2 + 4.8^2 - 6^2}{2 \cdot 3.6 \cdot 4.8} = 0$$
. Значит, $\angle B = 90^\circ$.

Тогда
$$ED^2 = y^2 + z^2 = 1,6^2 + 1,8^2 = 5,8$$
.

Ответ: $\sqrt{5,8}$.

С5 Найдите все значения a, при каждом из которых график функции $f(x) = x^2 - 3x + 2 - |x^2 - 5x + 4| - a$

пересекает ось абсцисс менее чем в трех различных точках.

Рассмотрим вспомогательную функцию $g(x) = x^2 - 3x + 2 - |x^2 - 5x + 4|$.

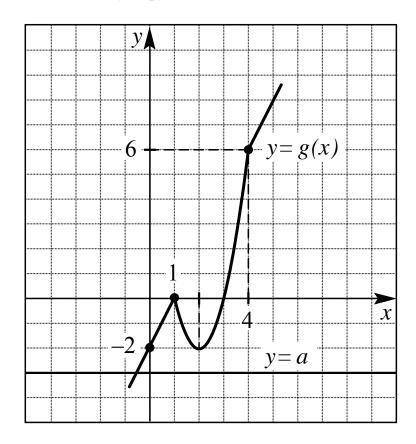


График функции f(x) пересекает ось абсцисс в двух или менее точках, если уравнение g(x) = a имеет менее трех различных корней.

Если
$$x \le 1$$
 или $x \ge 4$, то $|x^2 - 5x + 4| = x^2 - 5x + 4$, и $g(x) = 2x - 2$.

Если
$$1 < x < 4$$
, то $|x^2 - 5x + 4| = -x^2 + 5x - 4$, и $g(x) = 2x^2 - 8x + 6$.

График функции g(x) состоит из двух лучей и дуги параболы. На рисунке видно, что уравнение g(x) = a имеет менее трех корней, только если $a \le g(2)$ или $a \ge g(1)$.

$$g(2) = -2$$
; $g(1) = 0$.

Ответ: $a \le -2$, $a \ge 0$.

Найдите все пары натуральных чисел m и n, являющиеся решениями уравнения $3^n - 2^m = 1$.

Пусть n — четное число n=2k . Тогда $2^m=3^{2k}-1=(3^k-1)(3^k+1)$. Правая часть — произведение двух последовательных четных чисел, каждое из которых является степенью числа 2. Значит, $3^k-1=2$ и $3^k+1=4$, откуда k=1, и n=2 . При этом $2^m=8$, следовательно, m=3 .

Пусть теперь n — нечетное число. Все нечетные степени тройки (3,27,243,...) делятся на 4 с остатком 3. Значит, 3^n-1 делится на 4 с остатком 2. Из равенства $2^m = 3^n - 1$ получаем, что в этом случае m = 1 (если $m \ge 2$, то 2^m делится на 4 без остатка). При этом $3^n - 1 = 2$, откуда n = 1.

Ответ: m = 3, n = 2 или m = n = 1.